

MotorPro

ECM Troubleshooting Guide

Table of Contents

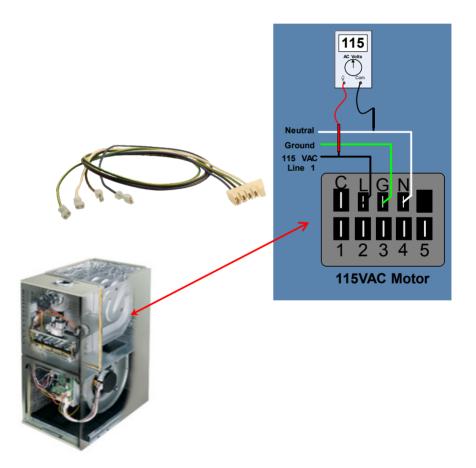
ECM Service	1
Constant Torque 115 Volt High Voltage Check	2
Constant Torque 230 Volt High Voltage Check	3
Constant Torque 24 Volt High Voltage Check	4
16x4W, PerfectSpeed Voltage Check	5
16x4W, Wire Low Voltage Check	6
US Motors 16x4W, Low Voltage Check	8
PerfectSpeed [®] Low Voltage	9
Motor Troubleshooting	10
Motor Verification	11
Inspect Control 3 Pin Connector	13
Control Unit Verification	14
Capacitors	15
Thermistor	16
Final Check	17

If the motor is running

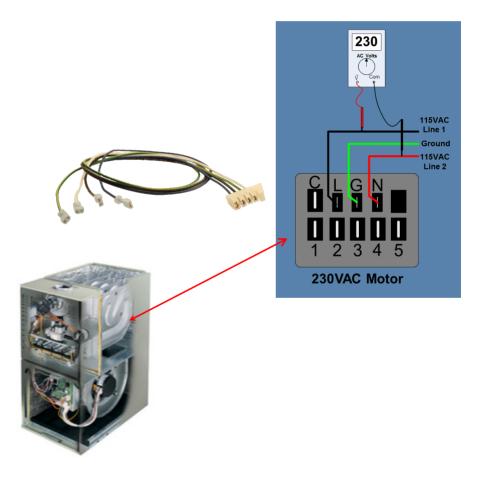
- · Noisy operation, limit or safety faults, frozen coils
- Motor may not be the problem
 - Check airflow settings with HVAC OEM guide
 - Check for dirt load on air distribution system components
 - · Check for closed dampers, registers and grilles
 - Measure total external static pressure (ESP)
 - Make repairs if total ESP is above HVAC OEM recommended

If the motor is not running

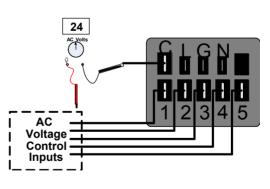
- Diagnose motor
- Always disconnect the power to the HVAC system before disconnecting or reconnecting any connectors to these motors.
- Two inputs needed for motor operation
 - High voltage constant power source
 - Voltage can be ±10% of rating
 - Always check for proper grounding
- Communication (Low Voltage)



- With power back confirm voltage from control board to motor via motor leads
 - High voltage input
 - 115VAC systems
 - 115VAC required at all times between terminals (L) and (N)

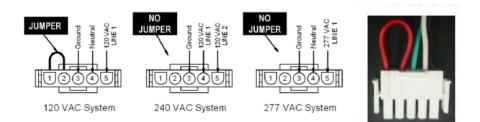


- With power back confirm voltage from control board to motor via motor leads
 - High voltage input
 - 230VAC systems
 - 230VAC required at all times between terminals (L) and (N)


Constant Torque 24 Volt Low Voltage Check

Troubleshooting

- With power back confirm voltage from control board to motor via motor leads
 - Low voltage input
 - Check for proper low voltage signals 18-30 VAC
 - Always check voltage between taps 1-5 and (C)
 - Check all modes of operations, only one tap will be energized per mode of Operation (Give time for Delays)



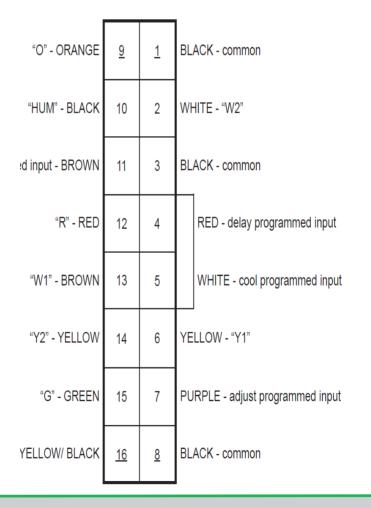
• Check the voltage between position 4 and 5 of the power cord connector Contact HVAC manufacturer if system is rated for 120 VAC power, and the measured voltage between positions 4 and 5 is not 120 VAC.

• Contact HVAC manufacturer if system is rated for 240 VAC power, and the measured voltage between positions 4 and 5 is not 240 VAC.

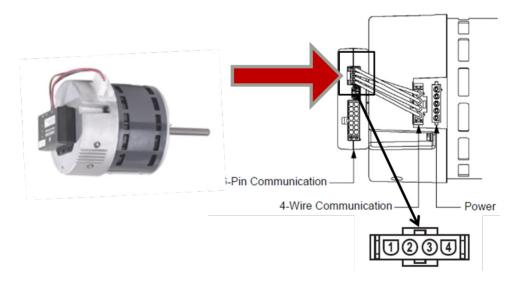
• Contact HVAC manufacturer if system is rated for 277 VAC power, and the measured voltage between positions 4 and 5 is not 277 VAC.

• If the measured voltages are correct between positions 4 and 5 for the 120 VAC, 240 VAC or 277 VAC system

- Refer to the OEM Service Guide to determine correct supply layout
- With power back on check the voltage between common(s) supply(s) of the power cord connector and the respective signal(s)
- If voltage is not detected recheck at the board.



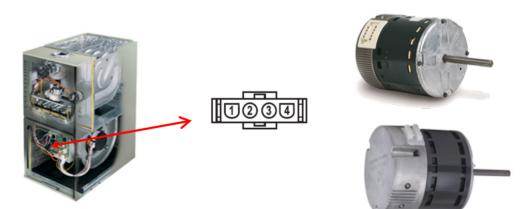
- In this illustration the commons are at the 1 and 3 positions
- Check for 24V between a common and the stage being called for.
- Example: for single stage heat you should detect 24V between 1 and 13.



US Motors 16x4W Low Voltage Check

Specific to US Motors 16 Pin

Reconnect line voltage to motor module


- Turn off power to system before reconnecting line voltage
- Check the voltage between positions 1 and 4 of the communication cable connector
- Voltage between positions 1 and 4 should be 9-15 Vdc
- Recheck 16 pin connections
- Note: Based on space limitations, the Interface Control Module may be remotely located.

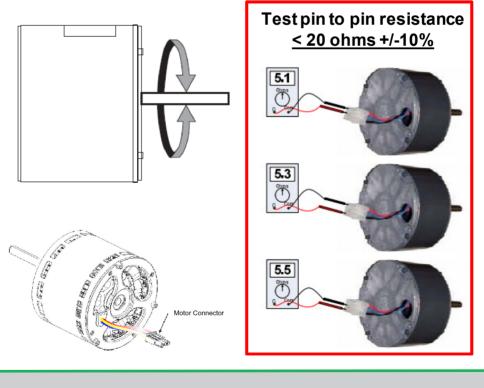
PerfectSpeed[®] Low Voltage

- Check the voltage between positions 1 and 4 of the communication cable connector
- Voltage between positions 1 and 4 should be 9-15 vdc
- Repeat steps for each mode of operation (Heat, Cool, Fan/Circ, etc.).

Motor Troubleshooting

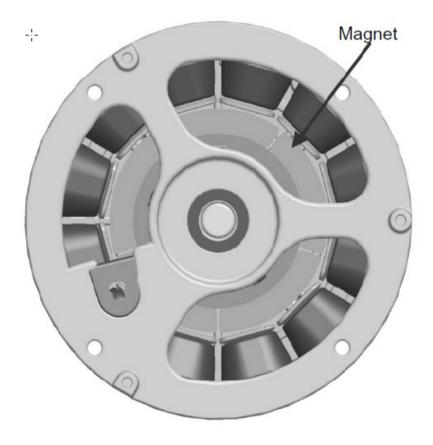
 Remove Control Module from motor based on manufacturers' instructions

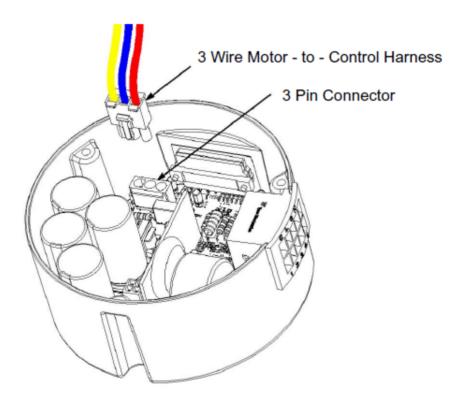
Control Module



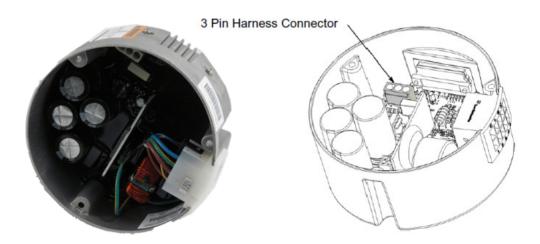
Motor Verification

- Make sure the motor shaft spins freely, without effort, manually in both directions
 - · Replace motor if the shaft does not spin freely without effort manually.
- Inspect connector on back side of motor for bent, damaged, or recessed wires and terminals
- Check phase to phase resistance between each of the three phase terminals in the motor connector
 - Resistance levels between any two contacts should be equal (less than 20 ohms)
 - Resistance between lead 1 and lead 2
 - Resistance between Lead 1 and Lead 3
 - Resistance between Lead 2 and Lead 3
 - · If resistance levels are equal the motor is functioning properly
 - · Replace motor if the resistance levels are not equal
 - · Replace motor if the resistance levels are open circuited or short circuited

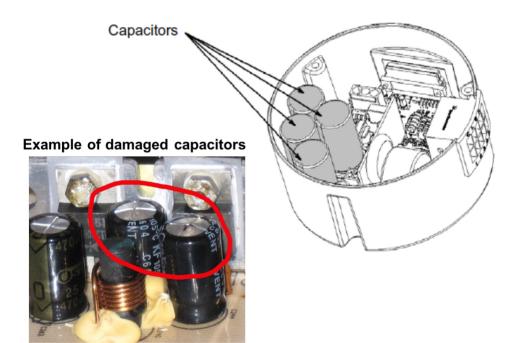




- Inspect the magnets through the back side of motor for broken or chipped magnets on the rotor core
 - Replace motor if magnets on the rotor core are broken or chipped

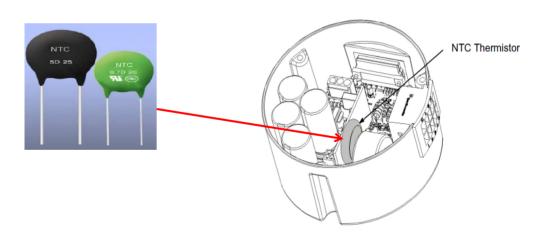


- Disconnect the three-wire motor to control harness from the control and remove control unit
 - Inspect for bent, damaged, or recessed wires and terminals inside of connector
 - Replace control unit if 3 pin connector contains bent, damaged or recessed terminals


- Check phase to phase resistance between each of the three phase pins in the harness connector
 - Check the resistance between any 2 of the 3 pins
- If the multi-meter indicates resistance levels greater than 100K ohms Motors, Control unit is functioning properly
- If the multi-meter indicates resistance levels are less than 100K ohms for US Motors, others by be different (refer to OEM manual for correct reading)
 - Replace control unit

Inspect capacitors inside of control unit

- Replace control unit if capacitors are bulging or swollen
 - Control unit may have 2 or 4 Capacitors



Inspect the NTC thermistor

- Inside of control unit for any cracks or breakage
- Not all control units have a NTC Thermistor
- Replace control unit if NTC thermistor is cracked or broken

- Check mounting and fastening of motor and control
 - Make sure control unit and motor are securely attached together and mounted tightly in HVAC system
- Check control unit connectors
 - Inspect for shorts, detached wiring, or loose connections.
- · Check power cord and signal connections
 - Make sure both are securely connected to control unit connectors.
- Check blower motor and verify wheel rotation
 - Make sure it spins freely manually without effort or assisted means in both directions
- Check circuit breakers

Notes

Notes

† All marks shown within this document are properties of their respective owners.

Nidee Motor Corporation, 2017; All Rights Reserved. U.S. MOTORS® is a registered trademark of Nidec Motor Corporation. Nidec Motor Corporation trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office. 17-8554-01

8050 W. Florissant Avenue | St. Louis, MO 63136 Phone: 855-487-6686 | Fax: 800-899-2887

